The Square Kilometer Array: What It Means for Planetary Science

Dayton Jones
Mick Connally

Jet Propulsion Laboratory, California Institute of Technology

Presentation Summary

- The Radio Astronomy Community has begun work on a radio telescope with a square kilometer of collecting area the Square Kilometer Array (SKA)
 - Compelling questions in Astronomy make the SKA worth building
 - Technology development is making the SKA feasible & affordable
- A large RF array such as the SKA also has benefits when used for spacecraft tracking
 - More than 100 times the G/T of a DSN 70m station
 - Multiple beams for tracking multiple spacecraft
 - Precision plane-of-sky position measurements
- A proposed strategic plan for DSN participation in the SKA

The Square Kilometer Array (SKA): A Breakthrough for Radio Astronomy

The SKA is an array of antennas with a collecting area of a square kilometer.

- Provides 100 times the sensitivity of today's best radio telescopes
- Very wide frequency coverage
- 100+ instantaneous beams
- Recommended by the Decadal Review
- Planned completion in 2015

The SKA An Artist's Conception

The SKA Example Array Geometry

The Astronomer's Dilemma

Answers to the most compelling questions in astronomy...

- What was the structure of the early universe?
- How and when were super-massive black holes formed?
- What is the history of star formation?
- Where is the dark matter in the universe?
- Can we detect and use very long-period gravitational waves as new window into the early universe?
- Are we alone? Search for natural or artificial radio emission from extra-solar planets

... require a breakthrough in RF observation capabilities

- Orders of magnitude more sensitivity
- Extremely high angular resolution imaging
- Multiple independent beams
- Broad frequency coverage

But how can all this be achieved?

Largest Full Sky Antenna Size vs. Time

Number of Antennas Arrayed vs. Time

9/7/01

DJ, MC

Antenna Arrays

The Very Large Array

- Arraying antennas is a well established technique in Radio Astronomy
 - Increase SNR
 - Increase angular resolution
- The VLA was modified for Voyager support during the Neptune Encounter
- Arraying of DSN antennas is an operational capability

What's Changed?

Breakthroughs in the following areas are making <u>much larger</u> arrays feasible

- Low cost, high performance, parabolic antennas
 - fueled by the home satellite TV industry
- Low cost, low noise, wide bandwidth RF amplifiers
 - breakthroughs in solid state technologies
- Low cost, reliable, cryogenics
 - developed for the next generation of computers
- Faster computers
 - Moore's law

SKA Cost Projected to 2010

SKA Cost Breakdown by Subsystem vs Antenna Diameter

Aeff/Tsys = 20,000, Aeff=360,000, Tsys=18K, BW=4GHz, 15K Cryogenics Antenna Cost = 0.1D^3 K\$, 2010Electronics Cost = \$15K per Element

Status of Large Arrays

- Allen Telescope Array (ATA)
 - 350 antennas
 - Construction is funded, antennas procured
 - Prototype array is operational
- Expanded Very Large Array (EVLA)
 - Phase 1: upgrade correlator and signal transmission
 - Phase 2: 8 new antennas providing ten times the angular resolution
- Atacama Large Millimeter Array (ALMA)
 - 80 millimeter-wave antennas
 - Development funded
- Square Kilometer Array (SKA)
 - Recommended by the National Academy of Sciences
 - US technology proposal to NSF being prepared
 - Major decisions (concept definition, site selection) by 2005

The Flight Project Manager's Dilemma

- Low data rates severely constrain science & public outreach
 - Images instead of movies
 - Low resolution instead high or targeted observations instead of mapping
- Small *In-situ* elements require comm relay spacecraft
- Critical events are often supported using spacecraft LGAs
 - EDL and spacecraft emergencies
- Plane-of-sky spacecraft position inferred from radial Doppler and range
 - Orbit determination is highly model dependent
 - Negative impacts to orbit determination, prediction
- Radio Science experiments often constrained by low SNR
- Any new spacecraft technology to mitigate these problems increases mission risk

The SKA as a Tracking Station

SKA vs. DSN 70m Stations at X-band

CITZA
NKA
OIXI

<u>70m</u>

94+

74

<1 E-13

<1 E-13

beams

100

1

Angular resolution

~5 nrad *

~50,000 nrad **

^{* 500} km baselines

^{**} Pointing error of a DSN 70m station

The SKA as a Tracking Station DSN Customer Benefits

- Increase telemetry return by up to a factor of 100+ ...
 - Enhance science (increase resolution, number of measurements ...)
 - Enable new missions (limited lifetime missions, interstellar probes...)
 - Virtual presence (streaming video)
- ...or decrease spacecraft mass, power, and cost
 - Enables new kinds of missions
 - Avoid the need for gravity assists
- Support meaningful data rates even over spacecraft LGA's
 - EDL and spacecraft emergencies
- Direct real-time measurement of plane-of-sky position simultaneous with Doppler and range
 - Improve targeting of landed elements
- Dramatically increase Radio Science and Radar capabilities

The SKA as a Tracking Station DSMS Program Benefits

- Arrays allow flexibility in resource allocation -
 - "dial-up" needed aperture with sub-arrays,
 - use multiple beams to support multiple spacecraft
- Arrays are less susceptible to RFI
- Arrays allow easy routine maintenance
- Arrays increase reliability
- Arrays can provide weather diversity
- RF arrays require no new spacecraft technology
- Form mutually beneficial partnerships with the radio astronomy community
- Stay at the cutting edge of technology
 - Large arrays are the "next frontier" in RF technology

The SKA as a Tracking Station What About Uplink?

- Communications and Navigation benefits are available with a downlink only array (even without uplink arraying)
 - A moderate single aperture (e.g. 34m Antenna) with a transmitter provides adequate uplink SNR for normal command, range, and two-way Doppler measurements
- Uplink arraying concepts do exist but need verification
 - Use DSN antennas for proof-of-concept demonstration
 - Demonstrate uplink arraying using small prototype array, perhaps one built for Radio Astronomy

The SKA as an Element of Landscape Design

Open Issue

A large array like the SKA will be built based on its enormous potential for radio astronomy.

What will the DSN's role be?

- 1 Participate in the SKA consortium to ensure deep space communications compatibility (downlink only array)
- 2 Work with the SKA consortium to define an active DSN role in:
 - Technology development
 - System design
 - Construction and operation of sub-arrays
- 3 Build one or more large DSN arrays
 - Take advantage of new technologies

A Strategic Plan

Define spacecraft tracking requirements for a large array

- Review Voyager Neptune/VLA experience
- Sponsor JPL workshop to develop mission and flight science concepts utilizing large arrays

Support liaisons to various large array efforts

- ATA, EVL A, ALMA, SKA
- Gain insight into developing technology, gauge progress
- Investigate the applicability of these arrays to spacecraft tracking
- Define a DSN role in development and implementation, where appropriate
- Secure their use as a DSN test bed, where appropriate

Initiate a DSN array R&D effort

- Update array costs versus antenna diameter studies using latest technologies
- Verify costs by fabrication and test of prototype elements and array
- Conduct transmitter uplink phasing experiment
 - assess calibration burden
- Develop core expertise and management confidence
- Estimated budget: \$2-3 M/year

Back-up Slides

The SKA as a Tracking Station Mission and Flight Science Workshop

Sample Agenda

- **Day 1: AM** -- Introduction: description of expected capabilities of large RF array(s) for spacecraft tracking
 - **PM** -- Outer planet exploration (beneficial changes to existing mission concepts, new ideas)
- Day 2: AM -- Mars exploration
 - PM -- Inner solar system (Mercury, Venus, Moon)
- **Day 3: AM** -- Small solar system bodies (asteroids, comets, Kuiper belt objects, small moons)
 - **PM** -- Astrophysics missions and others (interstellar probes, solar probes, etc.)
- **Day 4: AM** -- Individual working groups
 - **PM** -- Summary of working group results, recommendations

SKA Working Groups

- Array Configuration and Artificial Sky Simulation
- Correlator Design
- Station Antenna and Beam-Forming Design
- Interference Mitigation Techniques
- Site Evaluation and Selection
- Science Working Group

The SKA as a Tracking Station The Huygens Probe

